Opioid receptor-activation: retina protected from ischemic injury.
نویسندگان
چکیده
PURPOSE In nonocular systems, activation of opioid receptors has been shown to ameliorate tissue damage induced by ischemic stress. The current study was an investigation of whether opioid receptors activated by endogenous or exogenous agonists can ameliorate ischemic retinal injury. METHODS In an investigation of whether endogenous opioid receptor-activation reduces ischemic injury, the effects of the opioid antagonist naloxone (3 mg/kg; IP) on retinal neuroprotection induced by ischemic preconditioning (IPC) were evaluated. Whether exogenous opioid administration can reduce ischemic retinal injury was determined by pretreating rats with morphine (0.01-10 mg/kg) before injury. Morphometric and electroretinogram (ERG) analyses were used to assess the differences in retinal structure and function. The expression of opioid receptor subtypes was evaluated by Western blot and immunohistochemical analyses. RESULTS In control animals, 7 days after ischemic retinal injury, ERG a- and b-wave amplitudes were significantly reduced (23% and 41%, respectively). In addition, degeneration of the inner retina resulted in a 34% reduction in overall retina thickness. In animals receiving IPC before ischemic injury, ERG wave forms and retinal morphology were preserved. Pretreatment with naloxone reversed both the functional and structural retinal protection induced by IPC. In animals treated with morphine 24-hours before ischemic injury, ERG waveforms were preserved in a dose-dependent fashion (ED(50) = 0.18 mg/kg), and this protective response was reversed by naloxone pretreatment. Immunohistochemical and Western blot data demonstrated that the delta-, kappa-, and mu-opioid receptor subtypes are expressed in the retina. CONCLUSIONS These data provide evidence that activation of one (or more) opioid receptor(s) facilitates the development of IPC within the retina and can reduce ischemic retina injury.
منابع مشابه
δ-Opioid Receptor Activation Rescues the Functional TrkB Receptor and Protects the Brain from Ischemia-Reperfusion Injury in the Rat
OBJECTIVES δ-opioid receptor (DOR) activation reduced brain ischemic infarction and attenuated neurological deficits, while DOR inhibition aggravated the ischemic damage. The underlying mechanisms are, however, not well understood yet. In this work, we asked if DOR activation protects the brain against ischemic injury through a brain-derived neurotrophic factor (BDNF) -TrkB pathway. METHODS W...
متن کاملDirect preconditioning of cardiac myocytes via opioid receptors and KATP channels.
Previous studies demonstrated that opioid receptor activation mimics the cardioprotective effect of ischemic preconditioning via KATP channels in the intact heart. However, it is unknown whether this beneficial effect is exerted at the level of the cardiac myocyte or coronary vasculature or is mediated via the sarcolemmal or the mitochondrial KATP channel. Thus, the purpose of the present study...
متن کاملRegulation of Nitric Oxide Production by δ-Opioid Receptors during Glaucomatous Injury
To determine the roles of nitric oxide in glaucomatous injury and its regulation by δ-opioid-receptor activation, animals were treated with: 1) a selective inducible nitric oxide synthase (iNOS) inhibitor (aminoguanidine; AG; 25 mg/kg, i.p.); 2) δ-opioid-receptor agonist (SNC-121; 1 mg/kg, i.p.); or 3) with both drugs simultaneously for 7 days, once daily. The loss in retinal ganglion cell (RGC...
متن کاملCytoprotection against Hypoxic and/or MPP+ Injury: Effect of δ–Opioid Receptor Activation on Caspase 3
The pathological changes of Parkinson's disease (PD) are, at least partially, associated with the dysregulation of PTEN-induced putative kinase 1 (PINK1) and caspase 3. Since hypoxic and neurotoxic insults are underlying causes of PD, and since δ-opioid receptor (DOR) is neuroprotective against hypoxic/ischemic insults, we sought to determine whether DOR activation could protect the cells from ...
متن کاملδ-Opioid Receptor Activation Modified MicroRNA Expression in the Rat Kidney under Prolonged Hypoxia
Hypoxic/ischemic injury to kidney is a frequently encountered clinical problem with limited therapeutic options. Since microRNAs are differentially involved in hypoxic/ischemic events and δ-opioid receptor (DOR) activation is known to protect against hypoxic/ischemic injury, we speculated on the involvement of DOR activation in altering the microRNA (miRNA) expression in kidney under hypoxic co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 50 8 شماره
صفحات -
تاریخ انتشار 2009